B. Rotavera, J. Zádor, O. Welz, L. Sheps, A. M. Scheer, J. D. Savee, M. A. Ali, T. S. Lee, B. A. Simmons, D. L. Osborn, A. Violi, C. A. Taatjes
Journal of Physical Chemistry A, Vol. 118
Publication year: 2014


Product formation from R + O2 reactions relevant to low-temperature autoignition chemistry was studied for 2,5-dimethylhexane, a symmetrically branched octane isomer, at 550 and 650 K using Cl-atom initiated oxidation and multiplexed photoionization mass spectrometry (MPIMS). Interpretation of time- and photon-energy-resolved mass spectra led to three specific results important to characterizing the initial oxidation steps: (1) quantified isomer-resolved branching ratios for HO2 + alkene channels; (2) 2,2,5,5-tetramethyltetrahydrofuran is formed in substantial yield from addition of O2 to tertiary 2,5-dimethylhex-2-yl followed by isomerization of the resulting ROO adduct to tertiary hydroperoxyalkyl (QOOH) and exhibits a positive dependence on temperature over the range covered leading to a higher flux relative to aggregate cyclic ether yield. The higher relative flux is explained by a 1,5-hydrogen atom shift reaction that converts the initial primary alkyl radical (2,5-dimethylhex-1-yl) to the tertiary alkyl radical 2,5-dimethylhex-2-yl, providing an additional source of tertiary alkyl radicals. Quantum-chemical and master-equation calculations of the unimolecular decomposition of the primary alkyl radical reveal that isomerization to the tertiary alkyl radical is the most favorable pathway, and is favored over O2-addition at 650 K under the conditions herein. The isomerization pathway to tertiary alkyl radicals therefore contributes an additional mechanism to 2,2,5,5-tetramethyltetrahydrofuran formation; (3) carbonyl species (acetone, propanal, and methylpropanal) consistent with β-scission of QOOH radicals were formed in significant yield, indicating unimolecular QOOH decomposition into carbonyl + alkene + OH.